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FOREWORD

This document is a technical summary of the progress made since
September 28, 1968, by the Auburn University Electrical Engineering
Department toward fulfillment of phase B of Contract No. NAS8-11274.
This contract was awarded to Engineering Experiment Station, Auburn,
Alabama, May 28, 1964, and was extended September 28, 1966 by the
George C. Marshall Space Flight Center, National Aeronautics and Space

Administration, Huntsville, Alabama.
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SUMMARY

The performance of a hybrid control system containing a finite
word-length digital subsystem deviates from that obtainable if
infinite word-length capabilities are assumed. This deviation
arises for two reasons: (1) the system variables processed by the
digital hardware are quantized, and (2) the nominal coefficients
of the pulse transfer function D(z) to be realized by the digital
system are quantized. 1In this report, quantization errors of the
second category are considered. Specifically, a technique is pre-
sented for precisely correcting the errors which arise when the
nominal coefficients of D(z) are approximated by digital words of
finite length. The correction technique is developed initially
for the case of a digital filter with one approximated coefficient
and is then extended to closed-loop hybrid systems with several
approximated coefficients.

The case wherein the correction technique is not feasible is
also considered, and a method is described for optimizing the selec-
tion of quantized coefficients relative to a given performance
index. The performance index employed is based on the use of
frequency-domain design specifications.

Finally, an algorithm is presented for generating envelopes

on the frequency-response characteristics of continuous~ and
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discrete-time systems subject to parameter anomalies.
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I. INTRODUCTION

As a result of the rapid advances in digital computer technology
in recent years and the increasing versatility and commercial availa-
bility of digital components, the use of digital computers as compo-
nents in otherwise continuous-time control systems is becoming increasingly
prevalent. Systems which contain both analog and digital components are

normally referred to as "hybrid systems,"

and a large body of knowledge,
based primarily on z-transform calculus, has evolved for the analysis
and synthesis of systems of this class.

One of the major sources of error in a hybrid system is the presence
of quantization effects within the digital elements of the system. There
are two categories of quantization errors which affect the system perfor-
mance. These categories are: (1) amplitude quantization of éystem
variables, and (2) quantization of coefficients of the difference
equation to be realized by the digital device. This dissertation
considers quantization errors of the second classification.

Coefficient quantization in hybrid systems is present in
physically realizable digital dévices because the coefficients must be

represented with binary words of finite length. For example, con-

sider the case wherein the difference equation

eo(k) = p1 ei(k) + By eo(k-1) (1-1)



is to be realized by the digital portion of a hybrid system, where
eo(k) and ej(k) denote the output and input, respectively, of the
digital subsystem at the kth sampling instant. Assume that the
nominal coefficients By and By are to be implemented with binary coded
words having one sign bit and 10 magnitude bits to the right of the
binary point. Consequently, the least significant magnitude bit which
may be exercised in realizing B; and B, has a decimal weight of 2710,

Therefore, the set B of permissible coefficient quantization levels

of the device is

-1
B= [+n2 O n=o0,1,2, ..., 1023] , (1-2)

and in general, B; and By must be approximated by a suitable selection
from the members of B. The coefficient quantization errors of course
depend upon the members of B that are chosen to approﬁimate p1 and
Bo and upon the granularity of the set B, which in this case is 2-10,
The above example was based on the assumption that the coefficients
are uniformly binary coded; however, the quantization phenomenon results
regardless of the coding scheme employed. Different coding schemes
simply change the contents of B.
It is sometimes the case, due to the presence of rigid design
specifications, that one or more digital coefficients must be realized

with a much higher degree of accuracy than is permitted by the digital
system word-lengths. A technique for correcting coefficient quantization

errors in these cases and for attaining effectively infinite word-length
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resolution of digital coefficients is presented in Chapter.II.
The developments of Chapter III are based on the premise that the
set of permissible digital coefficient levels are adequate for approx-
imating the nominal coefficients, and a technique is presented for
optimizing the selection of quantized coefficients. The performénce
index employed is based upon frequency-domain specifications. Finally,
in Chapter IV, an algorithm is presented for generating frequency-
response. bounds of continuous-time systems subject to parameter toler-
ances. The technique is then extended to digital systems where coef-
ficient anomalies are investigated. The contents of Chapter V are

the conclusions resulting from the work in Chapters II, III, and IV.



ITI. CORRECTION OF COEFFICIENT QUANTIZATION ERRORS

In this chapter a technique is developed for eliminating the out-
put error arising from the quantization of system parameters in linear,
time-invariant, discrete~time systems. A generalized hybrid feedback
control system is considered and the technique is employed to correct
for the effects of coefficient quantization within the digital elements
of the system.

The correction method is developed first for the case of coefficient
quantization in digital filters with a single quantized coefficient;
it is then extended to closed-loop hybrid systems containing digital

elements with more than one quantized coefficient.

A. Digital Filter With One Corrected Coefficient

The input-output characteristics of an Nth-order digital filter
may be represented by an Nth~order transfer function in 2, Which will be
denoted by D(z) [1l]. Numerous techniques are available for physically
implementing this transfer function [2,3]. Kaiser [4] has shown that in
order to minimize the influence of coefficient quantization upon the
pole locations of D(z), any digital filter can, and indeed should, be
realized by a combination of first- and second-order systems. Further-
more, it has been demonstrated that certain types of implementation
schemes, for a given D(z), are more attractive than others from the view-
point of minimization of errors which arise due to the quantization of

4



system variables [5].

However, rather than confining the following discussion to a few
speéialized techniques for implementing D(z), a more generai approaéh
will be taken. A generalized representation of D(z) will be considered,
and the correction techniques developed for this form will be shown
to be applicable to any of the various other realization methods of
D(z).

The assumed form of D(z) is

Eo(2) g1z + szzN'1,+...+ BN+l
= s (11-1)

N N-1
Ei(z) z 'BN+2Z

D(z2) =

—eee= Bont1

where 83, i=1, 2, ..., 2N+1l, are the nominal, i.e., nonquantized, coeffi~
cients to be realized by the digital filter. A generalized block diagram
of the digital filter and the associated. analog-to-digital (A/D) and
digital-to-analog (D/A) interfaces are depicted in Figure 1. Note that
the variable e;(t) defines the reconstructed continuous—time'output of
the D/A conVerter, which in practice is usually a zero-order data-hold.

The transfer function of (II-1) may be described by an Nth-order

difference equation of the form

e (KT) = B1e; (KT) + Bgey [(k=1)T] +...+ By, e, [(k-N)T]
+ Byl (K-1IT] 4.t Boiie [(-NT] (I1-2)

where T is the system sampling period. However, in the interest of
simplifying notation in the subsequent discussion, T will hereafter be
omitted.

On the basis of (II-2), the correction technique will now be developed.
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1. Correction of a single numerator coefficient of D(z)

The solution of (II-Z) repfesents the nominal response of the
digital filter to initial conditions and to the input ej(k). Consider
now the resulting response if one of the D(z) numerator ccefficients,
for example B;, 1Si<N+1, is perturbed due to the effects of quantization.
In other words, assume that each of the coefficients, with the exception
of B;, lies on one of the admissible quantization levels of the digital

filter. Let Ei denote the quantized value of B; such that
Bi = Pi + Aq, (11-3)

where AY defines the value of the perturbation of p;. Thus, the
filter response with p; quantized is the solution of the following

difference equation:
eo (k) = Bre; (K) + Boej (k-1) + ... + pje; (k-i+l) + ...
+ Byqrei (k-N) + Bygzeo(k-1) + ... + Boynyieo (k-N) (I1-4)

where Eg(k) is used to denote the response of the filter with coefficient
quantization effects included.

The solution ey (k) of (II-2) at any sampling instant is a function
of the coefficient of Bj. Thus, it is convenient to relate eo(k) and
and Eb(k) through a Taylor series expansion in one variable of eo(k)
about the perturbed response E;(k)a

In generalized terms, the series takes the form

= 0
eoll) = 5o +) oF o™ @ _ (11-5)
L ytle B, = i

n=1 i



8
(n) . . .
where e (k) denotes the nth derivative of eg(k) with respect to B; - At
this point it is advantageous to introduce an auxiliary variable S(k,Ai),

which is defined by

[o¢] An
1 i n
S(k,04) = ZC’E:ET'GO( g0 - . (11-6)
Tn=1 Pi = P4
Thus (II-5) can be expressed as
eo(k) = eg(k) + A;8(k,4:). (11-7)

Due to its‘usage in (II-7) as a corrective term relating the nominal and
perturbed responses, the variable S(k,A;) will henceforth be referred to
as a "correction coefficient.”

Each of the terms comprising S(k,A;) may be directly evaluated from

(I1-2); i.e.,

r e o™ ) = ey (ke141) + Bygeo D (k1) 4 ..

BPi =By
-qQ
+ 52N+1eo( )(k'N),
% (@ Ag = (2) — (2)
5'!— €o (k) _= ﬁ {BN_'_ZGO (k—l) b I ﬁZN—FleO (k-N) R
By = By
2 2
p2 A2 - _
-+ e (1) N = ByysoD (=) + ...+ 82N+1e0(3)(k~Ni},
] =B 3

(1I1-8)
and so on. It should be noted that implicit in (II-8) is the assumption

that the nominal filter coefficients are independent of each other
(dBi/dﬁj = 0; i # j) and the input e;(k) is independent of the filter
coefficients (dej(k)/dp; = 0). However, this does not impose severe

restrictions upon the application of the correction technique, since
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dependencies of this type normally do not exist.

The combination of (II-6) and (I1I-8) yields
S(k,A;) = B428(k-1,41) + ... + Bont1S(k-N,A;) + ej (k-i+l). (I1-9)

Therefore, the correction coefficient S(k,Ai) is actually the solution

of what might be called an auxiliary difference equation as given by
(1I-9). Furthermore, the system that this equation describes responds
to e; (k-i+l) from its zero initial state, since the choice of initial
conditions of the digital filter is completely independent of the filter
coefficients. This auxiliary system, defined by (II~9), will be referred
to as the '"correction system'" in the sequel.

From the viewpoint of physical implementation of the correction
system, (II-9) has two significant properties: (1) each of its coeffi-
cients are realizable by the digital filter, and (2) its order and its
characteristic equation are identical to those of D(z). Hence, the
correction system may be implemented using (II-9) by either of the follow-
ing configurations: (1) by the digital filter itself if time-share
operation of the digital filter is feasible, as illustrated in Figure 2,
and (2) by two duplicate digital filters operating in parallel as shown
in Figure 3. 1In each of these two configurations the correction coeffi-
cient S(k,A;) is generated as a digital variable and is then multiplied by
Ai following the A/D conversion process. The resulting correction term
A8 (k, Ai) is then added to the perturbed response Eé(k), which completes
the implementation of (II-7) and produces the nominal response ej(k).

2. Correction of a single denominator coefficient of D(z)

Development of the correction technique for denominator coefficients
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12
will now proceed and is based largely on arguments and assumptions
advanced in the previous section.
Consider the perturbed filter response Eg(k) which might result
due to the quantization of one denominator coefficient, for example B;,
where N+2<i<?N+l. The difference equation describing the perturbed filter

response is
;—O(k) = Blei(k) + ﬁzei(k-l) + ... + BN_H_Ei(k-N) + BN+2g0(k-l)
+ooeo o+ Bieg(k-iHNHL) + ... 4 Boypreo (k-N), (1I-10)

The nominal response eg(k) may be expressed in a Taylor series
expansion in the variable B; about the perturbed response go(k) as

follows:

0

_ I
e (k) = e(k) + }:‘%— ™ () .

n=1 1

] (I1-11)

(n)

where eg (k) denotes the nth derivative of e, (k) with respect to B -
Once again, it is convenient to define an auxiliary variable S(k,Ai),

which is made up of the derivative terms in the Taylor series expansion;

i.e.,
S(k,01) = le—y—% eo(n) (k) - (I1-12)
‘ i LT a. = B.
n=1 1 1
Thus,
eo(K) = e (k) + A;8(k,0;) - (11-13)

Each of the terms comprising S(k, Ai) may be generated directly

from (II-2). It is assumed as before that the coefficients are independent
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and that the input ei(k) is independent of the coefficients. There-

fore,
1 - (1 - (1
%% eo( )(k) _= 5N+2e0( )(k-l) + BN+3eo( )(k-Z) + ..
) Bi = Bi '
+5.3 ), . - .
Bieg (k-i+H+1) + €5 (k=i+N+1) + *--
+ 62N+1Eo(1) (k-N)
JAWA 2 A - (2 - (2
E']!;' eO( )(k) = ?]!; {BN-[—ZGO( )(k-l) + BN+3eo( )(k'Z) + ...
6:i_ =Py
_— - (1
+ Bieo (2) (k-iH¥+1) + 2e0( )(k-i+N+l) + ...
— (2
+ BZN+1e°( )(k'N)} ’
2 2
a 3 A - @ - (3
3% eo( )(k) = §%-{5N+2e0( )(k-l) + 6N+3eo( )(k—Z) + .
Py = Bi

+ Bieo 3 (k-iHWH1) + 3e, @) (k-iHNHD) + ...

- (3
+ BZN—I—].QO ( ) (k'N)} ] (11-14)

and so on.
Through the combination of (II-12) and (II-14), it can be shown that
the correction coefficient S(k,Ai) satisfies the following recursive

relationship:

S(k,8,) = BruoS(k-1,41) + B 3S(k-2,A1) + ... + B3S(k-i+lHL, A;)

+ oo F By SRNA) + ..+ g (k-iHWHD)

00

M @, .
+ }:ET'eo (k~-i+N+1) 6. =3 . (I1-15)
i =P

n=1



14

Note, however, that the last two quantities in (II-15) are actually the
Taylor series representation of the nominal response eo(k-i+N+1); con~

sequently,
S(k,Ai) = BN—}-ZS(k-i’Ai) + BN+BS (k-2,Ai) + ...+ BiS(k"i'i-N’l'].,Ai)
+ oo F By S(R-NA) + e (k-i4N+1) (I1-16)

Thus, the correction coefficient for the case of quantized denominator
coefficients of D(z) is the solution of an Nth-order difference equation
having coefficients that are precisely realizable by the digital filter.
Furthermore, the correction system described by this equation responds

to the nominal filter output sequence eg(k~itlN+1) initially from its zero
state, since the initial conditions of the digital filter are independent
of the coefficients of the filter.

Essentially the same type of correction system implementation schemes
as mentioned previously for quantized numerator coefficients may be utiliz-
ed for correction of quantized denominator coefficients of D(z). One
notable similarity of the auxiliary system equations, (II-9) and (II-16),
is that in each case the correction system and the digital filter have
identical characteristic equations. However, they are dissimilar in that
the filter input is also the input to the numerator coefficient correction
system; while in the case of quantized denominator coefficients, the
nominal filter response eo(k-i+N+1)vis the input to the correction system.

Schematic diagrams of two forms of denominator coefficient correction
system implementations are depicted by Figure 4 and Figure 5. 1In each

example the corrected filter response e,(k-i+N+1) is converted from analog
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to digital form and is then processed by the auxiliary system, which
generates the digitized correction coefficient S(k,Ai). A D/A conversion
then takes place and the product AiS(k,Ai) is formed in analog fashion
and added to Eo'(t). This completes the implementation of (II-13) and

generates the nominal filter response eg(t).

B. Coefficient Correction in Hybrid Feedback Control Systems

The foregoing correction technique may be readily extended to systems
comprised of closed-loop interconnections of linear, continuous-time,
stationary elements and digital elements having quantized coefficients.
The schematic diagram illustrated in Figure 6 typifies this class of
hybrid systems.

Since the development of the correction technique for hybrid systems
closely parallels that previously described for open-loop digital filter
configurations, the following discussion will deal, for the purpose of
minimizing redundancy, only with the correction of a single denominator
coefficient Ei of D(z), the transfer function of the digital element of
the hybrid system. The correction technique for numerator coefficients
will be obvious from these results and those of the previous sections.
More specifically, the problem being considered here is: "How can the
system of Figure 6 be modified to produce the nominal response y(k) even
though the denominator coefficient B, is perturbed?"

The continuous-time elements of the hybrid system may be modelled by

the following generalized differential equation:
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x' (t)

Continuous~Time Elements
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y(B)=oqx' (£) + ayx' (£) + ... +
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% (k)
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X (K)=B1Y ()48, (k=1)+. . 4By 1y (k-10)
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+52N+l§(k-N)
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A/D

v (k)

Fig. 6--Schematic diagram of generalized hybrid system.
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- - - M _. @ (1)
y() = oqx'(£) +apx' () + ..o + oy x' (£) + oy (B)
(2 _(n
+ O3y (B) + .o+ gy (B), (11-17)

where ai’i=1? 2, ... , 2M+1l, are determined by the system parameters and
M is the order of the system model. In keeping with the notational con-
vention previously established, ;(t) denotes the perturbed response of
the continuous-time elements (resulting from quantized digital filter
coefficients), and E'(t) represents the perturbed filter response after
being reconstructed by the D/A converter, which in most cases is a simble
zero-order data-hold. The nth derivative of ;(t) and ;'(t) with respect
to time are denoted by ;(%%) and ;'(?%), respectively. Since the digital
filter accepts inputs and generates outputs every T seconds, where T is
the system sampling period, it is necessary to determine the output ;(k)
of the A/D data-hold element every T seconds. For this reason it is
desirable to "discretize" the continuous-time portion of the system and
formulate a discrete-time model, or difference equation, describing the
composite hybrid system. A useful method for accomplishing this is out-
lined in [ 6].

The discrete-time model df the continuous-time elements may then be

characterized. by the following generalized difference equation:
Y() = byx(k) + byx(k-1) + ... + bygx(k-M) + byyoy(k-1)
+ byy3y (k=2) + ... + boyy1y(kM), (11-18)

where by, i=l, 2, ... , 2441, are constants determined by the system.

The difference equation describing the perturbed response of the
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digital filter may be written in general form as
x(K) = 1y (&) + By (k-1) + «on + BV (K-N) + By X (k-1)
+ ...+ Eig(k-i+N+1) + ...+ 52N+1§(k-1\1), (11-19)

where N is the assumed order of the digital filter and Ei carries the
same meaning as in the analysis of the open-loop digital filter configura-
tion.

It can be seen in Figure 6 that perturbations of p; affect not only
the output x(k) of the filter but also the input y(k), which is coupled
to x(k) through the continuous-time elements. Therefore, the assumption
that the filter input is independent of the filter coefficients is a
luxury which is no longer available; at 1east not in the configuration
of Figure 6. However, the filter input may be made insensitive to pj
by a simple modification to the structure of the system. Suppose that a

correction term c(k) defined by
c(k) = x(k) - x(Kk) (1I-20)

is generated and added to E(k), as-depicted in Figure 7. This modifica-
tion in effect results in a system output and digital filter input which
are insensitive to perturbations in B4 and behave in a nominal manner
regardless of the value of A;. The generation of this correction term
will now be considered.

The perturbed filter output ;(k) and the nominal output x(k) may be

related through a Taylor series expansion in the variable B; as follows:
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Discrete-Time Model of Continuous~
Time Elements

x(@) | yR)=bix(k) + byx (k-1) .. .+byyx (k-M)| ¥ (k)

+bm+2y(k-1)+bM+3y(k-2)+ e

by ¥ (kD)

c (k)

x (k)

Digital Filter

K (K)=B1y ()48, y (k=1)+. . 4By 1y (k)

HBpox (k=1)+. . .+§i§(k-i+N+1)+. ..

81 (k)

Fig. 7--Discrete-time model of modified hybrid system
illustrating independence of y(k) and A;.
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_ SR (D)
x(k) = x(k) + Z%X (k)

n=1

: - 3 (I1-21)
Bi = By

where the derivative notation conforms to the convention established in
previous sections. Once again it is convenient to define an auxiliary
variable S(k,A;) as
n
1 af (@
S(k,0;) = 7= ) =7 x (k) ) (I1-22)

i La =

ﬁi"‘"Bi

which in turn specifies c(k) as
c(k) = AiS(k,Ai) . (I1-23)

The derivative terms in S(k,A;) may be written by inspection of the
difference equation describing the nominal filter response, which is re-

stated here for convenience:
x(k) = Bry(k)y + -« 4 Byp1Y(k-N) + Byox(k-1) + ...
+ By (k-14N+HL) + ...+ By x(k-N). (I1-24)

Using the property that y(k) is insensitive to variations of B> it
can be shown from (II-22) and (II-24) that the recursive relationship

defining S(k,Ai) in the corrected hybrid system of Figure 7 is
S(k,00) = Byt2S(-1,4,) + .u + B S(R-14NHLAL) + ...
+ Bon41S(k-N,A;) + x(k-1-H¢1). (II-25)

The correction system defined by (II-25) responds to the nominal filter
output sequence X(k-i+N+l) initially from its zero state, since the-

filter initial conditions and coefficients are selected independently.



23

It is iInteresting to note the similarities'of the cprrecfion coeffi~
cient equations in the above cése and in the case of the open-loop
digital filter configuration of the previous section, The characteristic
equations are of the same form; i.e., identical to the corresponding
perturbed filter characteristic equation. Furthermore, in both cases,
the correction equation coefficients are precisely realizable by the
digital filter. These similarities should not be unexpected, however,
since the removal of the sensitivity constraints between y(k) and B;
of the hybrid system leads to essentially the same set of conditions
as were present in the open-loop digital filter configuration. Therefore,
the implementations of the auxiliary correction coefficient equations
associated with the open-loop digital filter.(see Figure 4 and Figure 5)
are also applicablé to the hybrid system now under consideration. The
composite corrected hybrid system, with the correction equation imple-
mentation shown schematically, is depicted by Figure 8.

A simple numerical example will now be considered in order to
illustrate the applicability of the coefficient correction technique.

1. Example

Suppose that in Figure 6, the continuous-time elements are describable
by the following first-order differential equation:

Y(l%t) = 13.8 x(t) -~ 17.2 y(t) (11-26)
Further, suppose that the D/A converter operates as a perfect zero-order
data~hold at the rate of 25 Hz. and that the effects of quantization of
system variables are absent. Thus, the continuous-time eleménts, in con-

junction with the D/A converter, may be modelled as a discrete-time
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Continuous~-Time Eléments

y(t) = alx' (t) + azx' C“lt) +.. .‘F%H.]_X' @) ()
, y(t)

+ °‘M+2Y(1) (©) + 0,37 PXE) +.t gy, 1y M)

Digital Correction System

L_— A/D X(k S(k’Ai)=BN+ZS(k-1’Ai)+' . .+-B.iS(k'1+N+1 ’Ai) .,._

+. . .+62N+1S(k-N,Ai) + X(k'i+N+‘1)

D/A | S(k,Ai)

D/A A/D

Digital Filter
;(k) X(k) =BIY(k)+ﬁ2y (k 1)+ . -+BN+1Y (k'N)+BN+2x (k 1) y(k)

+...+Ei;(k-i+N+1)+...+62N+1;(k-N)

Fig. 8~«Composite corrected hybrid system illustrating schematically
the correction system implementation for a single denominator
coefficient.
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system by the following difference equation:
y(k) = 0.4 x(k-1) + 0.5 y(k-1) . (11-27)
Assume now that the nominal difference equation to be implemented

by the digital filter is

x(k) = Biy (k) + Box(k-1), gy = 1.0, B, = 0.1, (1II1-28)
and that the set B of realizable coefficients of the filter is
given by

B=[+0,125n; n =0, 1, 2, ..., 15]. (11-29)

Obviously, the nominal difference equation cannot be realized
precisely, since B5, a denominator coefficient of the digital filter
transfer function, is not a member of B. Therefore, a reasonable approxi-
mation to the nominal difference equation might be

(k) = y(k) + 0,125%(k-1), (11-30)

which corresponds to
Az =By, - By = -0.025. (II-31)

The correction coefficient difference equation may be obtained directly
from (II-30) using the generalized form of the correction equation develop-

ed previously in (II-25). Thus, in this example,
S(k, 4,) = 0.125 S(k~1, 4,) + x(k-1). (11-32)

In order to evaluate the performance of the correction scheme in
this example, a digital computer simulation of the discretized nominal
and corrected system difference equations was carried out. A program

was generated for solving recursively the system equations given by
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(I1-20), (I1-23), (1II-27), (I11,30), and (II-32).

The results of this simulation are depicted in Figure 9, where the
nominal, the corrected, and the noncorrected system responses to initial
conditions x(0) = x(0) = 100.0 are compared. Note that the corrected and

the nominal responses behave identically.

xkt)
100 JL

90 .
80 -

70 .

60- nominal

50 - corrected

noncorrected

40.
30~
20.
10-
0-% 1 1 7 — L
0 0.4 0.8 1.2 (sec.)

Fig. 9--Comparison of corrected and noncorrected responses.

C. Digital Filter With Several Corrected Coefficients

The remarks thus far have been limited, both in the case of the
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digital filter and the closed-loop hybrid system, to the correction of
a single coefficient of D(z). However, it is often the case that there
exist more than one coefficient of D(z) which are not realizable by the
digital element. Thus, it is desirable to extend the correction tech-
nique to the case of several perturbed coefficients.

The developemnt will begin with the correction of numerator and
denominator coefficients in the open-loop digital filter configuration
and then proceed to closed-loop hybrid systems. As might be expected,
the Taylor series expansion in several variables will replace the expansion
in one variable, which was introduced in the previous sections. Con-
sequently, the related equations, for more than two variables, become
extremely unwieldly. Therefore, in order to avoid obscuring the salient
features of the technique with mathematical detail, the approach will be
to develop the technique first on the basis of two perturbed coefficients

‘and then to generalize to any number of coefficients.

1. Correction of several numerator coefficients of D(z)

Consider the digital filter response which results if two numerator
coefficients of D(z), for example, B; and Sj, i<j and 1<i, j<N+1, are
perturbed by amd Aj, respectively, due to the effects of quantization.

From (II-2), the perturbed response may be expressed as
e (k) = Bei(k) + ..+ Eiei(k—i+1) + oo+ Ejei(k-j+1) + ...
+ Byp1eq (KN + Byyoeo (k=1) + ... + By +1Eo (k-N) . (II-33)

Since egp(k) is a function of two perturbed coefficients at any

sampling instant k, it is reasonable to assume that the correction
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coefficient, or coefficients, must evolve from a Taylor series expansion
in two variables, B4 and Bj- The nominal response eo(k) may be expanded

about the perturbed response Eb(k) in a Taylor series as follows:

_ ) eh) (1N @)
eo(k) = e, (k) + Z'r'l—r <Aieoi(k) + Ajegy ) o = § s (11-34)
=1 R o &
" By = F;
where the notation under the summation in the above equation is defined
by
¢)) (1) \(D deo(k) de o (k)
<§ieoi(k) +-Ajeoj(k) = A —— + Oy —
B aBj
(L (1) ~(2) 2, (k 2, (k
(Aieoi(k) + Ajeoi(k) ) = alf _5__59_(2_) + 20iAj Oeoll)
aﬁi aB]_BBJ
+ AL ——— 11-
J aBj

and so on. Note that the superscript symbolism in (II-35) now denotes

partial derivatives instead of total derivatives as in (I1-6) and (II-11).
At this point, two auxiliary variables, analagous to the correction

coefficient S(k,Ai) for one perturbed coefficient, will be introduced.

Firstly, let

1 ié\r{ ™ 1
81(k,A4,43) = AL / ar e oi (k) + AL Tl(k,Ai,Aj). _ (11-36)
n=1 Bi = Bi Pi = Ei

Bj = Pj By = Bj

I
™| W]
I

where Tj(k,Aj) is comprised of: (1) all cross-product terms in the
summation of (II-34) having the property that the exponent of A; is greater
than the exponent of Aj’ and (2) one half of each of the cross products

having equal exponents of A and Ajy- That is,
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. (1) (2) (1) (3) (L)
A:A |
1 oAy = =il e gy + 2 Aidjeiy (0 + b AlAjeoi ()
(2) (2)
+ %-A%Ageoij k) + ..., (11-37)
(m) (n)
where e o 5 denotes 5m+neo(k)/amﬁian6j.

The second correction coefficient SZ(k:Ai:Aj) will be defined as

00
1 N é,ril_ (n) 1
I =1 Bi =PB; Bi = Bi

where the quantity Tz(k,Ai,Aj) contains all cross-product terms of (II-34)
not included in Tl(k’Ai’Aj)‘ The motivation for defining the above auxiliary
variables is simply to permit the representation of the nominal response
eo(k) as the sum of the perturbed response Es(k) plus two additional cor-

rection terms, one for each perturbed coefficient; i.e.,
eo(k) = e(k) + Aisl(k,Ai,Aj) + Ajsz(ksAi’Aﬁ)' (11-39)

It can be shown by substitution of the expression for e (k), given
by (II-2), into the correction coefficient equations, (II-36) and (II-39),
and after considerable rearrangement of resulting terms, that the correc-

tion coefficients satisfy the following difference equations:

Sl(k,Ai,Aj) = ey (k-i+l) + ﬁN+2$1(k-l,Ai,Aj) + BN+381(k-2,A]-_,Aj)

+ ... + ﬁzN_l_lSl (k'N,Ai,Aj) ’ (II"LFO)

and

Sy (k,04,89) = ey (k=3+1) + ByynSy (k=1,41,489) + Byy3S2(k-2,41,44)

+ oo+ Bowg1S2 (K-N,A1,44) (1I-41)
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Once again, all of the partial derivatives of the input e;(k) with
respect to Bj or By are equal to zero, since the input and the coeffi-
cients are independent of each other. Similarly, it is assumed in the
development of (II-40) and (II-41) that each of the filter coefficients
are independent of the other coefficients. Furthérmore, it is evident
that the systems represeﬁted by (II-40) and (II-41) respond to- the delayed
input sequences e;(k-i+l) and e;(k-j+l), respectively, from the system
zero states, since the selection of the digital filter initial conditions
is independent of the filter coefficients.

Note the similarity of the correction coefficient equations for
the case of two perturbed numerator coefficients, (II-40) and (II-41),
and the case of one perturbed numerator coefficient (II-9). Each of the
three correction systems have the same characteristic equation as that of
the corresponding digital filter with quantized coefficients. Conse-
quently, it is apparent that the same types of correction system realiza-
tions may be employed in digital filters with two perturbed numerator
coefficients as for filters with one perturbed coefficient. The additional
perturbed coefficient simply adds another correction system in parallel
with the digital filter, as shown in Figure 10.

Verification and extention to more than two numerator coefficients

of D(z). The validity of the above technique may be easily sﬁbstantiated
by an examination of Figure 10. Since the response of the corrected
system is stated to be identical to the nominal digital filter response,
the z-transfer function relating the input and the output of the cor-

rected system should be identical to D(z). This, as may be seen in Figure

10, is obviously the case.
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Furthermore, it is not necessary to resort again to the Taylor series
expansion method in more than two variables in order to infer that for N
quantized numerator coefficients, there will be N separate auxiliary cor-
rection systems in parallel with the digital filter in the cqrrected
system configuration.

The general form of the nth numerator coefficient correction system
is evident from Figure 10. The system input is ej(k-n+l), its character-
istic equation is identical to that of the digital filter with quantized

coefficients, and the associated analog multiplier is A&1= Bn ~ Bn-

2. Correction of several denominator coefficients of D(z)

The application of the correction technique to two denominator
coefficients of D(z) is, in principle, equivalent to the development for
one perturbed coefficient. Suppose, for instance, that the denominator
coefficients, B; and Bj; i < j and N+I1<i,j €2N41, are perturbed by AV} and
Aj, respectively, as a consequence of the quantization process. Then, the

perturbed digital filter response E;(k) may be characterized as

eo(k) = Bres (k) + pyej(k-1) + ... + Byyreq (k-N) + pyyoeo(k-1)
+ oo+ Byeo(k-itNHl) + ... + EJ.Zo(k-j+N+1) + ...

+ Boys18o0 (k-N) (11-42)

Furthermore, the nominal and the perturbed responses may be related

through a Taylor series expansion in B; and Bj as follows:

¢y (1) \(m)

ey, (k) = eo(k) +Z-n—1,- <Aieoi(k) + Ajeoj(k) (1I-43)
n=1

]

Bi
B

B

j = PBj
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where the terms in the above summation carry the same meanings as previously
established in (II-35); i.e.,
1) IN@@) de, (k) de o (k)
Aieoi + Ajeoj = A, =+ A =

i J >

6, %,

QAie °§B() +4Age oi(l)>(2)= Ai ___z__azeo(k) + 2AiAj _a.zeo(k)
Bi BB
A§ i‘l’é@. > (11-35)
98 ;

and so on.

It is advantageous at this point to separate the infinite summation
of correction terms which relate eo(k) and E;(k) in (II-43) into two
distinct components, one being associatéd with Ai and the other with Aj'
In order to accomplish this, two auxiliary correction coefficients,

Sl(k’Ai’Aj) and Sz(k,Ai,Aj), will be defined such that
eo(k) = eg(k) + S1(k,A;,A5) + 5p(k,A7,4)) (11-44)

More explicitly, let the first coefficient be defined as

= AI.I (n)

Sy (k,A5,45) = L‘n—} e 0i (k) _+ Ty (k,A7,49) 5 (11-45)
n=1 Pi =B Pi = B
By = Bj By = Bj

where the variable Tl(k,Ai,Aj) assumes the same meaning as given previ-

ously by (II-37); i.e.,
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. (1) (1) (2) (1) 3@
Tl(k,Ai,Aj) ——-—1 eoij (K) + = 3 A%AJeolj (k) + = 4 AEA\JeolJ (k)

(2) (2)
+ 5 aiafens; (0 + o, (11-37)

(m) (n) 1
and so.on, (recall that eoij denotes 5m+neo(k)/6m6i5nsj). Consequently,

the second auxiliary correction coefficient Sz(k,Ai,Aj) may be defined in

terms of Tz(k,Ai,Aj) of (II-38), as follows:

Ay
Sz(k’Ai’Aj) = n! eoj(k) + T (k A sA ) —_ (I1-46)
n=1 63’- = ﬁl Bi _B_i
Now, on the basis of the correction coefficient definitions, (II-45)

]

and (II-46) stated above, the problem of synthesizing the auxiliary
correction system equations may be taken up.

In order to generate these equations, however, a somewhat different
approach than was employed in the numerator coefficient correction
scheme will be taken. Rather than consider Sl(k’Ai’Aj) and Sz(k,Ai,Aj)
separately, it is convenient to deal with the sum Sl(k’Ai’Aj) -+ Sz(k,Ai,Aj).
The method of solution will be, firstly, to substitute the expression
for the nominal digital filter response (II-2) into the combined form
of Sl(k’Ai’Aj) + Sz(k,Ai,Aj) from (II-45) and (II-46), and secondly,
to attempt to restate the resultant form as a recursive relationship in
terms of the delayed correction coefficient sequences and the delayed
nominal filter output sequence.

Direct substitution of the nominal filter output ey (k) from (II-2)
into the expression for Sl(k,Ai,Aj) + Sz(k,Ai,Aj) results (after a

slight rearrangement of terms and with the previously stated assumptions
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concerning independence of filter coefficients and the input) in the

following expression:

Ar.l (n)
B2 / — egy (k-1) + Bt2T1 (k- 1,81,45) + ...
n=1
0
- A} (n) - ,
+ Bi z -I-l—!- eoi(k-i+N+1) + 6iT1(k—i+N+1,Ai,Aj) + ...
n=1
[2¢]
~\' af M —
+ sz o7 €oi (keiHH1) + BTy (k- FHHLA;LA5) + ...
n=1
x
yaf{ (n)
* Bontl /a7 Coi(kN) + Bony T1 (k-N,44,4,)
n=0

8 ® |
+ B2 ), ot o (kD) + By pTy (-1,A0,80) + .

n=1
- VA @ _ .
+ Biyn' e oy (k-i+N+1) + BiTz(k—i+N+1,Ai,Aj) + ...
- * .
n=1
©0
- 93_ (n) -
+ B ) .o eoj (k-JHH1) + BTy (k-JHNH1,A:,485) + ...
n=1
C a3 ()
+ 62N+1}ﬂn: oy (k-N) + Bonyy Ty (k-N,A;,4,)
A~
n=1
= 1 (1) (1) (n)
+ Aieo(k'i+N+l)+AizaT<AieOi(k—l+N+l) + Ajeoj(k—1+N+l)

n=1

=) (1) (1) (n)
+ Ajeo(k—j+N+1)+Ajz'-r-lT(Aieoi(k-j+N+1) + Ajeoj(k-j+N+l)> }

n=1

Bi=pB i
P5=P3

(11-47)
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Notice that the last four quantities in (II-47) are actualiy the
Taylor series representations of the delayed nominal variables
Aieo(k—i+N+1) and Ajeo(k-j+N+l). In addition,-éach of the remaining terms
are of the same form as the correction coefficients defined in (II-45)

and (I1-46). Consequently, it is possible to rewrite (II-47) as follows:
S1(6,0,,8,) + Sy (kA ,89) =
Br+251 (61,840 + ... + Eisl(k-i+N+1,Ai,Aj) ...
+ Ejsl(k—j+N+1,Ai,Aj) + o F By 51 (KN4 LAY
+ B8y (k-1ALAL) + Lol Eisz(k—i+N+1,Ai,Aj) + ..
+ Ejsz(k-j+N+1,Ai,Aj) et By So(KNLALAY)
+ Aoy (k-iHHL) + Aje o (k- J+NH1) (11-48)

It is interesting to digress for a moment and note the effect

of combining Sl(k’Ai’Aj) and Sz(k,Ai,Aj) into a single expression, as
was done in (II-47). The motivation for this step becomes evident in
the development of (II-48). As a result of this combination, each of
the required partial derivative terms in the Taylor series representa-
tions of eo(k-i+N+1) and eo(k—j+N+1) are generated, which is desirable
since these variables are physically available for use as inputs to the
correction system. If Sl(k,Ai,Aj) and SZ(k”AifAj) had been considered
separately, the system variables e, (k-i+i+1) and e, (k-j+N+1) would not
have appeared explicitly.

The difference equation given by (II-48) may now be employed to
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realize the correction systems for E& and Bﬁ. This equation may be
implemented in a number of ways; however, perhaps the most convenient
method is to treat (II-48) as the sum of two separate correction sys-

tem equations, each having zero initial conditions. More specifically,

S]_(k,Ai,Aj) = BN—!—ZSl(k—l’Ai’Aj) I Bisl(k‘i+N+1:Ai’Aj)
+ ...+ Bjsl(k-j+N+l,Ai,Aj) + ..

+ Bont151 (-NoA1548,) + Aje (k- i+N41) (11-49)
and

Sz(k,Ai,Aj) Sz(k-l,Ai,Aj) + ...+ Bisz(k-1+N+1,Ai,Aj)

= Bys2
+ ...+ 3jsz(k—J+N+1,Ai,Aj) + ...

+ BZN+182(k-N,Ai,Aj) + Ase, (k- §4+N+1L) . (I1-50)

Therefore, it can be seen that (II-44), (II1-49), and (IT1-50) completely
specify the correction system for the open-loop digital filter configura-
tion presently under consideration.

A discrete-time model of the implementation of (II-44), (I1-49),
and (II-50), illustrating the required D/A and A/D interfaces and the
analog multipliers Ai and Aj is shown in Figure 1l. Furthermore, since
the correction equations (II-49) and (II-50) are of the same general
form as (I1-16), which was derived for a single corrected denominator
coefficient, the generalized implementation schemes depicted in Figure
4 and Figure 5 may also be employed in correcting two denominator
coefficients. The additional perturbed coefficient simply adds one more

auxiliary system in parallel with the first coefficient correction
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system (see Figure 11).

Verification and Extention to More than Two Denominator Coeffi-

cients of D(z). The validity of the preceding coefficient correction

method may be independently verified by inspection of Figure 11. In
order for the corrected and the nominal system time responses to be
equivalent, it is required that the composite z~transfer functions of
the corrected and the nominal configurations be identical. From Figure
11, it can be seen that the corrected system transfer function is in
fact identical to D(z); i.e.,

E (2)

o)

= A(z)B(z) = D(z) (11-51)
Ei(Z)

where A(z) is the digital filter transfer function with quantized coef-

ficients
N N-1
B1z + BoZ' C 4+ ... + B
AGZ) = 2 Nt . (II-52)
N = zN-i+l _ _ B zN-J+1 _ -
oo =By 5 2N+
and B(z) is the overall correction system transfer function,
B(=) = N-i+1 - N-j+1
1 J
1 - Aiz +‘AJZ
N — N-j+l — N-j+l
BN"‘ZZ T e ™ ﬁiz Tt e e e T sz = e e e ™ BZN+1
(I1-53)

Thus, the verification is completed.

Further extention of the above correction technique to any number
of perturbed denominator coefficients of D(z) is self-evident from Figure
11 and (II-53). It can be seen that for N perturbed denominator coeffi-

cients, there will be N auxiliary correction systems in parallel, each
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one having the same characteristic equation as the digital filter with
quantized coefficients. Furthermore, the input to the nth correction
system will be the delayed nominal output,eo(k-nﬁN41) multiplied in
analog form by A, = B, - Bﬁ. |

It should be noted at this point that even though the numerator
and the denominator coefficient correction methods have been treated
separately in the preceding discussion, the techniques may actually be
employéd simultaneously for any given D(z). This is easily demonstrated
by initially correcting the numerator coefficients of D(z) and then by
viewing the resulting transfer function as an intermediate function
D'(z) with perturbed denominator coefficients. It is a simple matter
then to correct the denominator coefficients of D'(z) using the technique
presented in this section. The final result is, therefore, an overall
system transfer function equivalent to D(z).

It will become apparent in the following section that the above
arguments also apply to the hybrid configuration of Figure 6.

D. Hybrid Feedback Control Systems With
Several Corrected Coefficients

Consider now the general class of hybrid systems illustrated in
Figure 6. However, instead of assuming only a single perturbed denomina-
tor or numerator coefficient in the digital element, suppose that several
coefficients must be corrected.

It has been demonstrated, both by the use of the Taylor series
expansion method and by z-transform analysis, that it is possible to

precisely correct for any number of numerator or demominator quantization
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errors in the open-loop digital filter configuration; i.e., the nominal
and the corrected system input-output characteristics have been proven
to be equivalent.

Therefore, since the objective in correcting the hybrid system
is to modify the digital feedback element such that its input-output
characteristics are nominal, it is apparent that the multiple coeffi-
cient correction schemes advanced for the open-loop case are applicable,
without modification, to the closed-loop system of Figure 6. The contin-

uous-time elements have no effect on the correction system implementation.

F. Some Practical Considerations

Note that the correction systems discussed to this point have been
based on the premise that only digital elements would be used to realize
the correction coefficient difference euqations. Therefore, each of the
proposed implementations have required a separate digital element and
an A/D - D/A interface combination for each perturbed coefficient. This
obviously increases hardware requirements and introduces additional
sources of errors due to quantization of system variables. Therefore,
it is advantageous to simplify the correction system implementations
whenever possible.

One potential area for economization of hardware requirements is
in the A/D conversion equipment necessary in the correction denominator
coefficients of D(z). Consider, for instance, the denominator coefficient
correction system modelled in Figure 5. This implementation requires

one A/D and one D/A conversion for each corrected denominator coefficient.
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However, the overall transfer function, Eo(z)/Ei(z), of the corrected
digital filter is unchanged if the correction system is remowved from
its location in Figure 5 and cascaded ahead of the digital filter as
shown in Figure 12, By this simple modification, the A/D converter at
the input of the filter may also be used as‘part of the correction sys-
tem; and consequently, no additional A/D converters are required to
correct for denominator coefficient errors.

Another area where hardware requirements might be reduced is in
the implementation of multiple-coefficient correction systems, as
typified in Figure 10. 1If special purpose hardware is to be utilized
to correct more than one coefficient of D(z), the implementation may be
achieved by a single Nth-order correction system, rather than by a
separate Nth-order systéem for each corrected coefficient.

The use of a single Nth~order system for correcting more than one
coefficient (in this case two, B; and ﬁj) is illustrated in Figure 13.
Although this system performs the same function as that of Figure 10, it
is evident that the realization which is employed in Figure 13 requires
only half as many digital operations as that of Figure 10. Consequently,

a considerable saving in equipment may be achieved.

F. A Note on Other Realizations of D(z)

From the outset it was assumed that D(z) was to be physically
realized by a single Nth-order digital system. This was the motivation
for expressing D(z) in the generalized form of (II-1). However, as

previously stated, there are in many cases advantages to realizing D(z)
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as a combination of first- and second-order parallel or cascaded sub-
systems, which of course requires that D(z) be expressed in partial
fractioned form or in factored form.

If this realization of D(z) is performed, it can be seen that the
coefficients become decoupled; that is, the correcfion of quantized
coefficients in one subsystem may be executed independently of the
coefficients of the remaining subsystems. It is important to note,
however, that each of correction techniques developed for the generalized
D(z) of (II-1) is directly applicable to the combination of first- and
second-order systems. The only difference is that the correction systems
must be implemented for several individual low order systems rather

than for a single Nth-order system.



IIT. SELECTION OF OPTIMAL QUANTIZED COEFFICIENTS

The techniques presented in the preceding chapter for correcting
quantized coefficients of D(z) are sometimes impractical to implement,
primarily due to the additional hardware which is necessitated. Conse-
quently, the designer is Sometimes faced with the problem of approxi-
mating the nominal D(z) as closely as possible by a suitable selection
of quantized coefficients. This immediately leads to the questions:
"What measure of 'closeness' is to be used, and how can the selection
of quantized coefficients be systematized?"

In this chapter the above problems will be investigated.

A. Performance Index

Before it is possible to systematize the selection of quantized
coefficients of D(z), a performance index must be defined which is, in
some sense, indicative of the nearness of the performance of the approxi-
mated D(z) to that of the nominal D(z). This performance index must
include factors which reflect numerically the design requirements for
the overall hybrid system. Therefore, it is apparent that the formula-
tion of the performance index is not independent of the designer's
judgement.

Perhaps the most fundamental design requirement which influences the

selection of quantized coefficients of D(z) is that of system stability;

46
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i.e., the degradation of system stability due to the approximation of the
nominal D(z) coefficients must be held to a minimum. Of course, there
may be other design specifications, such as static accuracy, system band-
width, response time, maximum overshoot, etc., which must also be main-
tained as nearly as possible to nominal in the selection of quantized
coefficients.

Each of the above design specifications is reflected in the shape
of the gain-phase plot of D(z) as z = exp(sT) traverses the unit circle
in the z-plane, or as s varies from -j #/T to j #»/T in the s-plane. For
instance, if it is required that the static accuracy of the hybrid system
be unchanged after the coefficients of D(z) are quantized, it is necessary
that D(1l) remain unchanged after coefficient quantization takes place.
Further, if the relative stability of the hybrid system is to be the same
before and after quantization of the coefficients of D(z), it is necessary
that the critical phase margins and gain margins of the system be equi-
valent before and after quantization takes place. 1In other words, if
z; is a value on the unit circle in the z-plane corresponding to a critical
stability margin, it is necessary that D(zi) be approximately the same
before and after quantization of coefficients is effected.

In general, the designer may emphasize any desired combination of
design specifications when selecting quantized coefficients of D(z) by
simply requiring that the departure from nominal of the gain-phase plot
of D(z) be minimized over the ranges of z on the unit circle which are
associated with these specifications. There are several ways in which

the above quantization policy might be incorporated in a performance
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index. However, for the purposes of the developments of this chapter,

the following performance index will be employed:

S Re [D(zg) - D(z)] | >
e Zi - Zi
K . 2
Im [D(z;) - D(z;
N ;“ {M [D(z1) - D(z1)] } -1
= Im [D(z1)]
i=1
where z;, i =1, 2, ... , K, are the predetermined critical values of 2

on the unit circle at which the perturbations of the gain-phase plot of
D(z) must be minimized. The symbol Bkzi) denotes the value of D(z;)
obtained after the nominal coefficients have been replaced by quantized
coefficients, and 2y, i =1, 2, ... , K, represent weighting constants to
be selected by the designer. Consequently, minimizing the performance
index given by (III-1) is equivalent to minimizing the sums of the squares
of the pefcentage changes in the real and the imaginary parts of D(z;),
i=1, 2, ... , K, in a given set of quantized coefficients. No attempt
will be made here to show that this particular performance index is superior
to any other. Moreover, the principle justification which will be offered
for its use is that experience has shown it to be satisfactory in practical
problems.

Before proceeding to the development of a numerical method for mini-
mizing the performance index, there are a number of definitions which
should be stated.

B. Definitions

Definition III-1: Let E%N+l denote the space with coordinates
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defined by the coefficients of D(z). A "point" or "vector" in E§N+l
means the number sequence of 2N+1 terms [Bl, Bos +ev s 52N+1] and will
be denoted by the single underlined letter B.

Definition III-2: Suppose D represents a digital element which is

to be used to realize D(z). Let Q denote thé set of points in E§N+l to
which B belongs if and only if B> i=1, 2, ... , 2N+1l, can be realized

precisely by D. 1In other words, Q is the union of all possible quantized
coefficient vectors associated with D.
Comment: It should be noted that the set Q corresponding to any

physically realizable digital device for implementing D(z) will be a

B .
2N+1°

date points on which J(B8) is to be minimized.

finite and bounded set in E Further note that Q is the set of candi-

Definition III-3: Let B and B' be points of Q. The statement that

"8 and B' are adjacent points in Q' means that there exists one integer

j e [1, 2N+1] such that

L gy = 5; for all 1 < 2N+1 except for i = j

2) By # 63 , and

(3) there is no member B" ¢ Q with the property that

1 t 1 ]
By < B} <By or By > By > )

Definition III-4: Let B' be a member of Q. The statement that

" means that if

"the performance index J has a local minimum at B8' in Q
B" € Q and g" is adjacentto B', then J(B') < JE™.

Definition III-5: The statement that "B' is an optimal set of
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quantized coefficients of D(z) " means that B'cQ and J(B') is a local
minimum in Q.
On the basis of the above definitions, a numerical technique for

optimizing J(B) may now be developed.

C. Minimization of J(R)

There are a number of algorithms available for minimizing functions
of several variables [7-9]. However, the minimization of J(8) does not
lend itself readily to any of these methods. There are essentially two
reasons for this: (1) most of the existing minimization procedures require
that the partial derivatives of J(B8) be derived with respect to each of
the components of B, which is extremely impractical for anything other
than very low order forms of D(2), and’(Z) the search for minima of J(B)
must be confined to the set Q<:EgN+1, whereas constraints of this type are
not incorporated in existing techniques. It is therefore evident that in
order to make use of the available methods, they must be modified to
circumvent the above problems.

The two procedures which have proven to be most successful in
minimizing the performance index are: (1) a modification of the steepest
descent method, and (2) a modification of a method described by Resenbrock
[8] in which one quantized coefficient is varied at a time. The first
technique converges more rapidly than the second; however, due to the
nature of the performance index, the second method is sometimes required
for higher precision. This aspect will be discussed in more detail as

the minimization techniques are evolved.
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1. Modification of the steepest descent method

The steepest descent method in its normal form consists of finding
the direction of steepest descent of the function Xﬁyl, gy «vv aN),
which is to be minimized, as ¢ varies from some initial starting point

a® in Ey- The direction of steepest descent from go is given by

¢° = -grad [X@°)] , (I111-2)

where g? is a vector in the required direction. The value of X(g) is then
calculated along a line from the starting point parallel to CO until the
least value is attained. There are no restrictions on the incremental
step-length to be used. Starting from the point of least X (&) on this line,
the process is repeated and a new direction of steepest descent is deter-
mined. The procedure continues until X(@) can be decreased no further.

In order to apply the steepest descent principle to J(8), the follow-
ing modifications must be effected: (1) the partial derivatives must be
numerically approximated, and (2) the choice of step-lengths in the
directions of steepest descent must be made such that J(B8) is minimized
only on Q, the set of permissible quantized coefficient vectors of D(z).

The first modification may be easily implemented by means of the

relationship

oJ(B) =~ J(Bl 4‘A, Bas «vo 52N+1) - J(Bl3 B2s -er 52N+1)

., (I11I-3)
B4 A

where A is chosen sufficiently small.
A convenient method for accomplishing the second modification is to

prohibit step-lengths along any coordinate axis of E%N+1 of anything
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other than integral multiples of one quantization level. This of course
eliminates the possibility of J(B) being examined at any point other than
points in Q, with one possible exception; the case wherein the step-
length when added to a point in Q results in a point whose components
exceed the bounds of Q along one or more coordinate axes. This is a
highly unlikely occurrance in most practical problems; however, it

may be circumvented if the need arises by the addition of specialized
functions to J(B) which become extremely large as the bounds on Q are
approached [8 ].

One obvious effect of the proposed technique for selecting step-
lengths is that it becomes unlikely that the directions of the steps at
the initial starting points in Q will be parallel to those of the coores-
ponding gradient vectors at these points. This affects, in varying
degrees, the rate of convergence of the method. At first glance, the
apparent solution to this problem is to make the number of quantization
levels per step along each axis of E§N+1 proportionally equal (as nearly
as possible) to the corresponding components of the gradient vector.
However, this is not always the best policy, since the minimum total
step-length by this approach could become prohibitively large if one
of the components of -grad [J(B)] were much smaller than another component.

The most successful step-length algorithm which has been investiga-
ted thus far is as follows: let h; denote the quantization granularity
associated with the coefficient g;; then the vector s representing the
directed step-length to be used in moving from some initial point p%eQ

toward a local minimum of J(B) in Q is
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-hl sgn =) J

-h2 sgn

e
]

) (I11I-4)

L i

where sgn is defined for this case as

dI(B°) ]

sgn [£f] = +1 if £ > 0,
sgn [£f] = 0 if £ = 0, and
sgn [£] = -1 if £ < 0.

It can be seen in (III-4) that the components of s will never be greater
than one quantization level in magnitude, which eliminates the possibility
of the prohibitively large minimum step-lengths mentioned previously.
Furthermore, since s and -grad [J(8°)] must lie in the same "quadrant"

of the difference in their directions will not in general be

R
great enough to drastically affect the rate of convergence.

The only undesirable aspect of the modified steepest descent method
outlined above is that the iterative process may terminate before a
local minimum of J(B), as given by Definition (III-4), is reached. This
usually occurs when there are more than one nonzero element of the

final directed step-length s of the process, and in order to reach a

local minimum, it is necessary to perturb only one of the coefficients.
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For this reason, a second, more refined, and somewhat slower stage was

incorporated in the minimization algorithm.

2. Second Stage

After the modified steepest descent method has terminated, the
following technique may be utilized to guarantee that a local minimum
of J(B) is reached.

The last point of Q which is attained in the steepest descent
procedure is employed as a starting point in the second stage. Each
of the coefficients By, Bg, ... , Bonyl 1S then varied in turn, one
quantization level at a time; J(B8) is reduced as far as possible with the
first coefficient varying and then control passes on to the next. This
process continues until no further reduction of J(B) is possible and a
local minimum of J(B8) is found.

This quantized coefficient vector is therefore the desired optimgl
set of quantized coefficients of D(z) based on the performance index J(B).

A simple numerical example will now be considered for the purpose
of demonstrating the details of implementing the proposed quantized

coefficient selection technique.

3. Example

Consider the hybrid system configuration represented in Figure 14,
which consists of an unstable continuous-time plant and a digital
controller in the feedback loop for the purpose of stabilizing the sys-
tem. It will be assumed that T, the system sampling period, is 0.04

seconds and that the D/A converter functions as an ideal zero-order
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Plant -

D/A

x'(t)

x (k)

-11.45

G(8) =
s2 -.0.024

Digital Contro}ller

y(t)
¥
A/D
y (k)
et

Fig. l4--Example.
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data-hold. Classical frequency domain techniques may be used to show
that the following digital controller transfer function adequately

stabilizes the system:

2
D(z) = P1z_* Pp% * B3 ) (I11-5)

22 + B,z + Bg

where
61 = 1.0000,
62 = -1.9400,
B3 = 0.9405,
64 = ~1.8150,
and
Bg = 0.8159.

For the purpose of the following discussion, it will be assumed that
the digital device used in implementing D(z) is capable of realizing both
positive and negative coefficients having magnitudes from O through
2047/1024, in increments of 1/1024. This defines the set Q of permissible
quantized coefficient vectors in E% and the corresponding quantization
granularities; i.e., hy = hy = hy =h, = hy = 2710,

The design specifications which will be emphasized in this example
are the system phase margin and the static assuracy of the system;
moreover, the objective will be to select a quantized coefficient vector
from Q which minimizes the deviation of these performance characteristics

from those of the nominal system.

To proceed further, a knowledge of the nominal magnitude-phase plot of

the system is required. The magnitude-phase plot associated with the open-

loop z-transfer function of the system in Figure 14 may be generated by
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conventional sampled-data techniques [1]. This information has been
computed and plotted in the form of a Nyquist diagram in Figure 15. It
is apparent from this plot that the performance index must include terms
which reflect deviations in D(z) in the vicinity of z = 1.0000 + j0.0000
and z = 0.9950 + j0.0998. These requirements may be incorporated in
(ITI-1) to obtain a suitable performance index for the problem under

consideration; i.e., let

2 _ 2
Re [D(z3) - D(zy)] }
B = EZ {:Ki Re[D(z;) ]
i=1

2 _ 2
Im [D(z3) - D(z1)] }
+ Z {mi m (DG , (111-6)

i=]

where zl = 1.0000 + j0.0000, z, = 0.9950 + j0.0998, and Xy = kz = 1.0.

All that remains to be done before minimization of J(B) ﬁay be
carried out is the selection of an initial starting point, @9, in Q.
Experience has shown that a convenient choice for the initial starting
point is the member of Q whose components deviate from those of the
nominal coefficient vector by the least amount. However, in order to
effectively demonstrate the convergence properties of the two-stage mini-
mization technique in this example, a starting point having components
that deviated several quantization levels from those of the nominal

coefficient point was chosen. This point is given by (III-7).

o _ 1024
Pi = 107z
o __ 1987
By =" 1024
o _ _968
By = T024
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o _. 1859

Ba =" To24

o - 833 -
Ps = Toz - (aIi-7n

which corresponds to J(g°) = 30.94133.

A digital computer program (see Appendix } was written for imple-
menting the previously described two-stage minimization technique, with
B° as the starting point, and the results of each successive iteration
of this program are tabulated in Table 1. As a note of practical
interest, the results presented in Table 1 required 14 seconds of execu-
tion on an IBM model 7040 digital computer.

The system magnitude-phase plot associated with the optimal quantiz-
ed coefficients ffom Table 1 is presented in Figure 16 as an indication
of the effectiveness of the quantized coefficient selection technique.

A comparison of this plot with that of Figure 15 reveals that the
deviation from nominal of the system phase margin due to the selection

of quantized coefficients is approximately five degrees. Moreover,

the static gain deviation is nearly undetectable on the plots. Whether
or not these deviations are tolerable depends of course upon the designer's
judgement. If, however, they are unacceptable, the designer has the
following alternatives: (1) he may adjust the weighting factors Aj and
12 in order to effect trade-offs between static accuracy and phase margin
deviations, (2) he may select different initial starting points in Q in
an attempt to locate relative minima of J(B) in Q which are less than
that obtained in Table 1, or (3) he may simply require that coefficient
word-lengths be increased within the digital hardware.

Several observations are appropriate at this point concerning the
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second alternative stated above. It has been observed in several
practical examples that there may exist more than one relative minimum
of J(B) in Q in the immediate vicinity of the nominal coefficient point.
The number of these relative minima of course depends almost entirely on
the character of D(2z) and the coefficient word-lengths being considered.

For instance, under the conditions imposed in the previous example, it

was found that by choosing different starting points in Q, relative minima

of J(8) in Q were attained ranging from J(8) = 1.00083 (with B; =
1024/1024, p, = -1987/1024, pg = 963/1024, B, = -1859/1024, and pg =

835/1024) to J(B)

0.01123 (with pq = 1024/1024, By = -1986/1024,

63 = 963/1024, By -1858/1024, and Bg = 836/1024) .

It is especially interesting to note that the relative minimum
J(@) = 1.0083 corresponds to the point in Q whose components deviated
by the least amount from the respective components of the nominal coef-
ficient point. It is difficult to attach any significance to this
occurrence, aside from the fact that the absolute minimum of J(8) in Q

is not limited to points of close proximity to the nominal coefficient

point.



IV. AN ALGORITHM FOR COMPUTING FREQUENCY-~
RESPONSE BOUNDS FOR SYSTEMS SUBJECT
TO PARAMETER ANOMALIES

A problem of considerable interest in effecting a control system
evaluation is that of determining in some measure the effect of para-
meter anomalies upon the system performance. This problem arises both
in continuous-time systems, where component tolerances may introduce
parameter uncertainties, and in digital systems, where equipment mal-
functions might conceivably result in erroneous realizations of D(z)
coefficient magnitudes. Several techniques have been advanced for
treating the parameter anomaly problem, as evidenced by [10-127.

In this chapter, a new solution to the parameter anomaly problem
is developed based on frequency-domain design techniques. An algorithm
is introduced which enables the designer to generate a set of absolute
bounds on the magnitude and the phase plots of a system transfer function
subject to a given set of parameter error ranges. These envelopes may
then be used to determine the effects of parameter variations upon
system stability.

The technique 1is developed initially for the case of continuous-
time systems wherein the parameters are qllowed to assume a continuum of
values within their respective tolerance ranges. Then, with these
results as a basis, the method is egtended to the magnitude and the

phase plots of D(z), where bounds must be obtained relative to a finite

63
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set of coefficient magnitude errors.
Central in the develobment of the algorithm are certain definitions
and theorems related to the calculus of extrema for functions of
several variables. The following is a compilation of these theorems
and definitions,

A. Definitions and Theorems

Definition IV-1: Let x and y be points in the N-dimensional

Euclidean space Ey. The distance between x and y is defined as

N
1/2
lx - 3| = [Z(Xi - Yi)z}
i=1

Definition IV-2: ©Let r be a number greater than zero. The state-

ment that "N.(X,) is a neighborhood of x, in Ey'" means that N, (x,) is

the set of all points x in Ey such that
x - x| <r.

Definition IV-3: The statement that 'the set of points SCEy is

an open set'" means that if x is a point in S, then there exists a
neighborhood N, (x) < S.

Definition IV-4: Let f(x) be a continuous function defined on an

open set S & Ey with function values in E;. Then f(x) is said to have

an absolute maximum at the point a € S if
f(x) < f(a) , for all x € S .

If a ¢S and if there exists a neighborhood Nr(g)cz S such that
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£(x) < f(a), for all x ¢ Nr(i),

then f(x) is said to have a relative maximum at the point a. Absolute
minima and relative minima are similarly defined.

Theorem IV-1: Let £(x) be a function on an open set SC Ey with

finite first-order partial derivatives at a point xoeS. If f(x) has
a relative minimum or relative maximum at xXg; then the gradient of
f(x) at xo is 0 [13].

Theorem IV-2: Let f(x) have continuous second-order partial

derivatives on an open set S&Ey, and let XS be a point having the

property that the gradient of f(x) at x, is 0. Let H(x,) be the N x N

0
symmetric matrix whose ijth entry is hij = Bzf(§o)/ Bxiaxj and let
A = det[H(x,)]. Let Ly = 1 and let /y_j be the determinant obtained
from A by deleting the last k rows and columns.

i. A sufficient condition for f(x) to have a relative minimum at x,
is that the N+1 numbers &y, Dy, -+« » Ly be positive; a sufficient
condition for f£(x) to have a relative maximum at x4, is that 2y,

DYy eee s Dy be alternately positive and negative. That is, if
H(xy) is positive (negative) definite, then f(§o) is a relative
minimum (maximum) .

ii. A necessary condition for £(x) to have a relative minimum (maximum)
at X, is that H(x,) be positive (negative) semidefinite [13,14].
Comment: Theorem IV-2 provides a useful analytical method for

locating relative extrema of functions of several variables. It fur-

nishes a "combined'" set of necessary and sufficient conditions for the

existence of relative extrema of f(x) at any point in S, with one
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notable exception. This exception is the case wherein the H matrix
associated with a given point in S is semidefini;e. In this case,
Theorem IV-2 does not guarantee that £(x) achieves a felative extrema.,
Therefore, when this situation arises, one must resort to‘Definition
IV-4 to determine whether or not f(x) attains a relative extremum;

and if so, the type of extremum.

Definition IV-5: Let G(s, ;1, ;2, oo ;ﬁ) denote the generalized

transfer function of the continuous-time system to be considered,
where 21, 89, «os Zﬁ represent the toleranced parameters whose values
are not known precisely but are known to be within a prescribed set of

tolerance ranges.

Definition IV-6: Let a; denote the nominal value of Ei’ for i =

Definition IV-7: Let aj + Ay and aj - Oy denote the maximum

and minimum permissible values of Ei, respectively, where Ay; > 0 and
Ay >0; d.e. ay + Ay Day >a;-Apy, for i =1,2, ..., M,

Definition IV-8: Let G(jw, a) = U(w, &) + jV(w, a).

Definition IV-9; Let D(z, El’ e Bﬁ) denote the generalized
transfer function of the digital system under investigation, where El’
EZ’ cee EN denote the coefficients whose incorrect representations
within the digital system are to be considered.

Definition IV-10: Let b, represent the nominal value of Ei’ for

Definition IV~11: Let Q; denote the set of erroneous representa-

tions of gi which are to be considered in generating the envelopes on
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the magnitude and the phase plots of D(erT, Eb. Further, let
b; + A,; be the greatest member of Qi and let'bi - Dy be the least

member of Qi’ where Ahi'z 0, A,, >0and i =1; 2, ... , N.

1i
Comment: Note that since the coefficients of D(z, E) must be

realized by words of finite length in a physically realizable digital

system, there are a finite number of misrepresentations of bi which

can occur. Consequently, Q; must be a finite set.

jowT

Definition IV-12: Let D(¢3", Bb) = U(w, b) + jV(w, b).

With the above definitions and theorems as a basis, the develop-

ment of the algorithm may now proceed.

B. Development of the Algorithm for Toleranced
Parameters in Continuous-Time Systems.

Consider the system represented by G(s, E). Due to the assertion
that each of the toleranced parameters may assume a continuum of values
within its respective tolerance range, the magnitude and phase asso-
ciated with the complex number G(jw, E) become.M-parameter families of
curves when plotted versus o in the conventional frequency response
format., Each permissible combination of the M parameter values will
in general result in a different set of frequency-response character-
istics. Furthermore, each of U and V is an M-parameter family of
curves in the U-w and V- planes, respectively. (In some cases, the
arguments of U and of V are omitted for notational convenience). It
will be shown that by determining the envelopes on the U and the V
families of curves, one can establish a set of absolute bounds on the

phase and the magnitude families of characteristics of G(jw, E).
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At this point it is convenient to establish an M-dimensional Eu-
clidean space E; in which the coordinates are defined by the tolerarced
system parameters 21;*;2, see ;M. Consequently, the parameter
tolerances describe a set of permissible "operating points" in Eﬁ.

The objective now is to absolutely bound the magnitude and the phase

of G(jw, E) at each frequency of interest for any permissible set of

parameter values. Since

_ 1 V(w, a)
ZG(jw,‘g) = tan” “|e——0ou|, (Iv-1)
U(w, a)

one possible approach to the problem is to extremize each of U and V
independently at the frequencies of interest and then select the
greatest and least values of ZG(ju% E) from the set of values corre-
sponding to the four combinations of the extrema of U and V. Further-

more, since
_ -9 -2 1/2
leCiw, a)] = [U(w, a) + Vo, 2) ] ) (1Iv-2)

a similar argument applies to the magnitude of G(jw, E). It is evident
from (IV-1) and (IV-2) that this procedure would in fact yield a set

of absolute bounds on the gain and the phase of G(jw, E) in every case
except one; the case wherein the absolute extrema of U and (or) V are
of opposite sign. Therefore, this eventuality must be taken into
account if the foregoing procedure is employed to generate frequency-
response bounds. This problem will be considered in more detail as

the development progresses.
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1. Change of variables.

It would be convenient to employ Theorem IV-1l and Theorem IV-2
in extremizing U and V. However, since the set of permissible operating
points in E& is not an open set, these theorems are not directly appli-
cable. For this reason, it is advantageous to perform the following

changes of variables. Let

- Lyi - B Bug T AL o
a. = a. + + sin o5 , (1IV-3)

i i
2 2

]
oy
w
N
-
.
=

where i

Note that the transformation described by (IV-3) in effect maps

a

p> Onto

the set of operating points, a closed and bounded subset of E
Ea, an M-dimensional Euclidean space whose coordinates are the &i
variables. Therefore, since the transformed set of operating points
is an open set, the above theorems are now applicable, assuming of
course that the requirements on the partial derivatives are satisfied.
It is important to note that sin a& is not the only function
which might be employed in (IV-3) to attain the desired transforma-

tion; for example, cos &; would perform equally well,

2. Absolute bounds on U and V.

In the subsequent discussion, it is assumed that both U and V are
continuous and have continuous first- and second-order partial deri-
vatives at all points in Eﬁ and for all frequencies of interest. This
is not a severe a limitation since the transfer functions encountered
in the modeling of continuous-time systems usually possess this

property.
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Consider now the real part U of G(jw, Q). A set of absolute
bounds on U at any desired frequency w may be obtained by the follow-
ing procedure. The solution of the equations JU(w, 5)/ B&i = 0 for
the variables &i, i=1, 2, ... , M, yields a set of points T CZE%
having the property that each point QET is, by Theofem.IV-l, a can-
didate for extremizing U.

To determine the points of T at which U does in fact achieve
relative extrema, it is necessary to apply Theorem IV-2 and to examine
the signature of the sequence Ay, A1, ... , &y which results for each
point in T. If none of the members of T yield a semidefinite form of
H, then Theorem IV-2 may be used exclusively to isolate extrema of U.
1f, however, certain members of T lead to semidefinite H matrices,
then it is necessary to numerically evaluate U in the neighborhoods
of these points and to employ Definition IV-4 to investigate extremal
behavior of U.

The next step in the algorithm, after the points in T where U has
relative maxima and where U has relative minima have been isolated, is
to select from these sets the points which produce the greatest rela-
tive maximum and least relative minimum of U. The values of U corre-
sponding to these points are of course the desired absolute bounds on
U at the frequency w.

In the preceding discussion, only the real part of G(jw, é) was
considered., However, it is evident that the same procedure is equally

effective in the problem of generating absolute bounds on V(w, é).

It is important to note that the aforementioned procedure for bounding
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U and V must be reapplied for each frequency of interest. However,
this step of the algorithm is easily implemented with a digital computer
program once the forms of the necessary partial derivatives have been

established for evaluating the sequence A,, Al, cee s Oy in Theorem IV-2.

3. Bounds on magnitude and phase.

After the absolute extrema of U and of V have been established for
a given frequency of interest, it is possible to obtain a set of abso-
lute bounds on the magnitude and the phase of G(jw, éb as follows. It
can be seen in Figure 17 that the bounds on U and on V generate a
rectangluar region in the U-V plane within which G(jw, éb must lie
for any é in Eg. As mentioned previously in connection with (IV-1)
and (IV-2), an upper and a lower bound on the magnitude and on the
phase of G(jw, éb can be easily determined by consideration of only
the four vertices of this rectangular region. However, the case where-
in the absolute bounds on U and (or) on V are of opposite sign must be
treated as a special case. If the rectangular boundary intersects
one of the coordinate axes, as is depicted for example in Figure 18-a,
the lower bound on the magnitude of G(jw, éb is computed at this inter-
section rather than at a vertex of the rectangle. 1If both coordinate
axes of the U-V plane are intersected, as in Figure 18-b, only the
upper bound on the magnitude of G(jw, éb is computed at the vertices.

The three remaining bounds must be chosen as

- <y 6(w, @ <n , (1V-4)
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v

Gmax

min

- absolute bounds on magnitude
of G(jw, @

- absolute bounds on phase of
G(jw, @

Gpax> Cmin

Bmax’ 6min

Fig. 17.--Typical rectangular region in the U-V plane,
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and
0 < |G(w, @)]- (IV-5)

The repeated application of the above procedure for all fre-
quencies of interest results in a set of absolute bounds, or an
envelope, on the system frequency-response characteristics. This
step, like the preceding steps, is well suited to digital computef

implementation.

4, Simplifications.

The procedure for extremizing U and V is not as involved in many
cases as it might first appear. It is simplified considerably by
certain properties which are frequently exhibited by the U and the V
functions. Several of these properties.will now be considered and
their effect on the application of the algorithm will be noted.

Property 1: The trigonometric terms which enter into the changes
of variables in (IV-3) usually result in cos &1 being a factorable
multiplier in the expressions for oV (w, éb/%&i, i=1,2, ... , M.
Consequently, due to the unbounded number of zeroes of cos ai, the
set T of candidate points will be infinite. However, due to the cyclic
nature of the function cos &i’ only a finite subset T' of T correspond-
ing to &ie[“ﬂ, ), i=1, 2, ... , M, need be considered in extremiz-
ing U or V. The remaining members of T will yield no extrema of U or
V not already produced by members of T'.

Property 2: 1In most cases the matrix H of second-order partial

derivatives associated with U and with V is a diagonal matrix when
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evaluated at points in T. In terms of the application of Theorem IV-2,
this means that H is positive definite if and only if each of the
elements hy3, 1 =1, 2, ... , M, are positive. Moreover, H is negative
definite if and only if hyj;, 1 =1, 2, ... , M, are negative. This
property substantially simplifies the use of Theorem IV-2 in the search
for extrema of U and of V.

Property 3: Another useful property is that in many cases every
principal minor of H is nonzero when evaluated at points in T. In the
case of a diagonal H matrix, this means that §U(w, Q) / &if # 0 or
g%(u% @)/ &if #0, for i =1, 2, ... , M and QGT. Consequently,
Property 3 eliminates the possibility of H being semidefinite in those
cases, which means that Theorem IV-2 provides a combined set of neces-
sary and sufficient conditions for the extremization of U or V. Thus,
one needs only to select from the permissible candidates for 5&, i=1,
2, ... , M, all of the combinations which produce positive definite H
matrices, and Theorem IV-2 guarantees that there exist no other points
of relative minima of U (or V). The same argument applies to relative
maxima of functions having Property 3.

A numerical example which is treated in the following section
will provide further clarification of the above statements and will
indicate in a somewhat heuristic manner the reasons for the existence
of these properties in the U and the V functions.

5. Example
The following numerical example is given to demonstrate the appli-

cation of the foregoing algorithm. Consider the system represented by
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the transfer function

o aj(ags + 1)
G(s, a1, ag, ag) = — R (Iv-6)
s(ass + 1)

where ay, a,, and ag are toleranced parameters having nominal values

given by
a; = 1.0, (Iv-7)
a, = 2.0, (1V-8)
and
ay = 1.0 . (1v-9)

Further, suppose it is desired to establish a set of absolute bounds
on the system frequency-response characteristics which result from a
+ 10 percent variation of these parameters about their nominal values.

Then, following the algorithm, the variable parameters are defined as

a; = 1.0 + 0.1 sin a (1V-10)

ay = 2.0+ 0.2 sin a, , (Iv-11)
and

'53 = 1.0 + 0.1 sin &3 . (IV-12)

The next step is that of determining the bounds on the U and on
the V families of curves. 1In the discussion which follows, only the
development of the envelope on the U family will be considered in
detail. Since the procedure for generating the envelope on V is based

on the same arguments as for U, the discussion of V will be limited to
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a brief summary.
The real part of G(jw, —_oz_—_) is

(1.0 + 0.1 sin &;) (1.0 - 0.1 sin @3 + 0.2 sin ay)

U(w, Q) = (1v-13)

(1.0 + 0.1 sin EB)zm? + 1.0

and the subset Ty of points in Eg” which are candidates for extremizing
U(w, é) may be determined by Theorem IV-1l. To be more explicit Ty is

comprised of points which satisfy the equation
grad [U(w, @)] = 0. (TV-14)
The components of this gradient vector are listed below for convenience:

oU (w, é) 0.1(1.0 - 0.1 sin —OL_B 4+ 0.2 sin '&2) cos al

- = =5 s (Iv-15)
d oy (1.0 + 0.1 sin oc3) o + 1.0
oU (w, é) 0.2(1.0 + 0.1 sin '&l) cos &2
— = — , and (Iv-16)
d ap (1.0 + 0.1 sin a3)2e? + 1.0
oU (w, —g—) 0.1(1.0 + 0.1 sin al) cos 63
d 0y (1.0 + 0.1 sin ag)%e? + 1.0

0.2(1.0 + 0.1 singy) (1.0 = 0.1 singg + 0.2 sinap) (1.0 + 0.1 sinag)cosay

= 2
[(1.0 + 0.1 singy) e’ + 1.0]
(1V-17)

Therefore, from (IV-15) through (IV-17), it is apparent that TU consists

of points having the property that

_ (2n + D7
a; = ————;———-— ;no=0, +1, 42, ..., (Iv-18)
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for i =1, 2, 3. Note that in this case, TU'is invariant witﬁ w.
This of course means that Tj must be determined only once and is
applicable at all frequencies. Note also that TU has Property 1.

Theorem IV-2 may now be employed to isolate points of Ty at
which U(w, Q) is extremized. 1In this example it is evident that
each one of the off-diagonal elements in the matrix H of second-
order partial derivatives of U(w, Q) contains at least one of the
terms cos a&; i =1, 2, 3. Hence, H is a diagonal matrix for any
Q‘GTU and therefore possesses Property 2. Furthermore, it is easily
shown that none of the diagonal elements of H are zero for q €Ty;
i.e., H has Property 3. Therefore, only Theorem IV-2 is required to
isolate the extrema of U(w, @) in Tyy; and, the application of
Definition IV-4 is not necessary.

Since H is a diagonal matrix, the sequence of determinants in

Theorem IV-2 reduces to the form

by =1
3%U (w, Q)
X
% (w, T
IR N
2U(w, T)
N3 = g ————a— . (Iv-19)

d 332

From the sequence of expressions given by (IV-19), it is a simple mat-

ter to select the components Oy, Oy, and O3 of the points in Ty such
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that the criteria set forth in Theorem IV-2 are satisfied and the
points of relative minima and of relative maxima of U(w, @) in Ty

are obtained. Consider A, for example:

1
U (w, &) 0.1(1.0 - 0.1 sin Gy + 0.2 sin G,) sin o
= 3 2 1
—_— = - . (IV-20)
3T, (1.0 + 0.1 sin T3)2w?+ 1.0
(4n - D
It is evident from (IV-20) and Theorem IV-2 that '551 = —

n=0, +1, +2, ... , are the only values of al which need be con-
sidered in the minimization of U(w, ). Further, because of Property 1,
this set of candidates may be reduced to the single wvalue a1=- /2.
Moreover, 01 = 7/2 is the only component value of Gj, that need be
considered in the maximization of U(w, -_Qc__) in Ty.

Similar arguments may be employed to show that Qp =-7/2 and
03 = 7m/2 are the only values of the remaining components of g €Ty
which must be considered in minimizing U(w, @); and aZ = 7/2 and
Q3 =— 7/2 are the only values that must be employed in maximizing
U(w, Q) -

Substitution of the above results into (IV-13) results in a set
of boundary equations which absolutely bound U(w, %) for at any fre-
quency of interest and at any operating point QGE%. These equations

are

Ulw) = 5 (upper bound) (1v-21)

and
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0.63
U(w) = 5 (lower bound). (Iv-22)
1.21es 4+ 1.0

The V boundary equations, which are determined by the same proce-
dure as for the U family, are
1.7842 + 0.9

Vi) =-— (upper bound) (1v-23)
o(1.210% + 1.0) :

and
2.178¢% + 1.1
V(iw) =- (lower bound). (1v-24)
@(0.81a® + 1.0)

The final step of the algorithm can now be applied; that is, the
U and V boundary equations are used to define, for each frequency of
interest, a rectangular region in the U-V plane which bounds G(jw, &),
for the prescribed set of parameter tolerance ranges. Then, from the
boundaries of these rectangular regions, the maximum and minimum magnitude
and phase are determined for each frequency of interest by the method
illustrated in Figure 17 and Figure 18. This step was implemented
with a digital computer program which generated the boundary regions
for each desired frequency and systematically checked the boundaries
for the extremes of phase and gain.

The resulting phase and gain envelopes for this particular example
are illustrated in Figure 19 and Figure 20.

One additional observation should be made before the above example
is completed. It is quite possible that, at a given frequency, a

vertex of the rectangular region in the U-V plane which is used to
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obtain one of the magnitude or the phase bounds is itself unattainable
for any g in E%. The bound obtained in this case is, however, an
absolute bound, but it may be rather conservativef Consequently, the
envelopes depicted in Figure 19 and Figure 20 may bE'conse;vative over

certain frequency ranges.

C. Extention to Digital Systems with Coefficient Anomalies

With only minor modifications, the algorithm presented in the
foregoing discussion may be used to generate envelopes on the magni-
tude and the phase plots of the complex number D(ejam, B) subject to
a given set of erroneous representations of the'digital filter coeffi-
cients.

The changes of variables which are necessary for the application

of Theorem IV-1 and Theorem IV-2 in the extremization of UQw,E) and

V(w, E) are
— Lui = L1 By T AL _
bi = bj + + > sinBy, (1Iv-25)
2 2
i = 1,2, ..., N.

Consequently, the N-dimensional space E% replaces E% of the previous
development.

The magnitude and the phase characteristics associated with
D(ejdﬂ, E) are N-parameter families of curves when plotted versus w.
Each possible set of coefficient misrepresentations will in general
result in a different magnitude-phase plot. However, unlike the

parameter tolerance problem in continuous-time systems, there are
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only a finite set of coefficient anomalies which might occur; i.e.,
Q;» i= 1, 2, ... , N, are finite sets. Thus, when the sets Ty and
Ty of candidate points in E% for extremizing U and V are generated,
any point with components not associated with Q;, i =1, 2, ..., N,
must be neglected.

Aside from the above stated changes, the technique previously
developed for generating frequency-response bounds in continuous-
time systems is direttly applicable to digital'éystems with coeffi-

cient anomalies.



V. CONCLUSIONS

Several of the problems associated with coefficient quantization
in hybrid control systems were considered and solutions to these
problems were advanced.

A technique for precisely correcting the time-response of a hybrid
system containing quantization approximations of nominal digital filter
coefficients was developed in Chapter II. Central in the technique is
the use of a Taylor series expansion of the nominal system response
about the approximated system response. In order to implement the
correction technique, it is necessary to realize a separate auxiliary
correction equation for each coefficient to be corrected. However, the
coefficients of these equations are precisely realizable by the word-
lengths of the digital filter. Further, the orders of the correction
equations are the same as the order of the difference equation being
realized by the digital filter. Consequentiy, the technique has the
desirable property that it may be implemented by time-sharing the
digital filter or by using duplicate digital filters., The coefficient
correction scheme increases considerably the system hardware requirements,
and therefore, it is recommended only in cases where infinite word-length
precision of coefficient realizations is essential.

In cases where coefficient quantization errors are tolerable, the

85
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procedure which was outlined in Chapter III may be employed to optimize
the selection of quantized coefficients. The procedure minimizes a
performance index which may be fashioned by the designer to reflect
deviations from nominal of a wide variety of design specifications. The
minimization technique is implemented by a two-stage digital computer
program which locates relative minima of the performance index in the
set of permissible quantized coefficient combinations. However, since
the results are not global, it is sometimes necessary to locate more
than one relative minimum of the performance index and select as the
optimal set of coefficients the set with least relative minimum of the
performance index.

A useful algorithm was presented in Chapter IV for establishing,
subject to a given set of parameter tolerance ranges, an envelope
that bounds the frequency-response characteristics of a linear, stationary,
continuous-time system. The bounds obtained from this technique are in
some cases conservative; however, they provide information which is
indicative of the worst possible performance of the system for a given
set of parameter tolerances. The method also exhiﬁits the desirable
feature that the effects of many parameter tolerances may be investigated
without a significant increase in the difficulty of obtaining the
envelope. Thus, the algorithm is a useful analytical method for effecting
a system parameter tolerance study. The algorithm also provides, with
minor modifications, an attractive method for investigating the effects of
coefficient anomalies in digital systems. Given a set of bounds within

which the coefficient errors must lie, one can generate via the algorithm
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an envelope on the gain and the phase plots of the digital system

z-transfer function.
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MODIFIED STEEPEST DESCENT METHOD

DIMENSION P1(10)s SUMSQ1(20)s SUMSQ2({20)s X1(20)s X2(20)s X3(20)s
1X4{20)s X5(20)s X6(20)s B(20)s B1{20)s B2(20)s AI(20)s RE(20)s KN{
220)

COMPLEX CMPLX3sCEXPsG9Gl9G29G3sS(20)92(20)

K=0

N=2

PRINT 20

PRINT 19

M=1

VAL=,1E20

DEFINE COEFFICIENT GRANULARITIES

GRAN=1,/1024,
DEFINE DEL USED IN PARTIAL DERIVATIVE APPROXIMATIONS

DEL=14/20480
DEFINE CONSTRAINT POINTS ON UNIT CIRCLE OF Z-PLANE

2(1)=CMPLX(0,10000000E010400000000F00)
Z(2)=CMPLX(0499500416E00+0499833415E-01)

NOMINAL COEFFICIENTS

B(11=10000
B(2)==1+9400
B(3)=0,9405
B(4)==148150
B(5)=0,8159
DO 1 I1=1sN
G=(Bl1)*Z(T)1%¥24B(2)%Z(1)4+B(3) )/ (Z(1)*¥24B(4)%2(1)+B(5))
AT{TI)1=2ATMAGIG)
1 RE‘I”REAL(G, 90
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DEFINE INITIAL STARTING POINT

B1(11=1024./1024,
B1{212~1987671024,
B1(3)=968,/1024,
B1(4)=«1859,/1024,
B1(5)=833,/1024,
DO 3 I=1sN
Gl=(Bl(1)*Z (1) ¥*¥24B1(2)%Z(1)+R1(3))/(Z(1)%%24B1{4)*¥Z(1)4B1(5))
X1{1Y=RFAL(G])
X2{1)y=AIMAG(G])

DO 8 J=195

DO 4 I=1s5
B2(I)=B1(1)
SUMSQ1(J)y=0,0
SUMSQ2(J)=0,0
B2(Ji=B2(J)+DEL

DO 5 I=1,N

G2= (82(1)*2(11**2+BZ(2)*Z(I)+82(3))/(Z(I)**2+8214)*Z(I)+BZ(5))
X3(1)=REAL(G2)

X4(1)=ATMAG(G2)

SUMSQ1(J)=SUMSQ1 (J)+((RE(T1=X3(T1))/RECI)I*#2+( (AT(I)~X&(1))/AT( 1))
1%#2

5 SUMSQ2{J)=SUMSQ2(J)+((RE(T)=X1(T1))/RE(T))**24+((AT(1)~X2(1))/AT1(1}))

11

1%%2

IF (MeGTo1) GO TO 7

MM+

VAL=SUMSQ2(J)

DO 6 1=1s5

KN(1)=81(1)/GRAN

PRINT 21 SUMSQZ(J)oKN(l)’KN(Z)9KN(3)9KN(4)9KN(5)

PARTIAL DERIVATIVE APPROXIMATION

P1(J)y=(SUMSQ1(J)~SUMSQ2(Jy3)/DFEL
CONT INUE

DO 10 J=1s5

IF (P1(J)eEQe0.0) GO TO 10

IF (P1(J)eGT4060) GO TO 9
B1(J)=B1(J)+GRAN

GO TO 10

Bi1{J)=B1{J)=GRAN

CONTINUE

ITERATE UNTIL SUMSQ EXCEEDS SUMSQ OF PREVIOUS ITERATION

SUMSQ=e060
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DO 12 I=1sN
Gl=(B1{1)*Z(1)#*¥2+B1(23%#Z(114+B1(3))/(Z2(1)1%%24+B1{4)%Z(1}4B1(5))
X1(I¥y=REALI(G1)}
X2(1)1=ATMAG(G])
12 SUMSQ= 5UMbQ+(!RE!I)‘XI!I))/REKI))**2+((AIKI)°X2(I))/AI(1))**2
1IF (SUMSQ,GE.VAL)Y GO 10 16
DO 13 1=1+s5
13 KN{(1)=B1(1)/GRAN
PRINI 219 SUMSQoKN(1)9KN{2)sKN{3)sKN{4)sKN(5)
VAL=SUMSQ
K=0
DO 15 J=15
IF (P1(J)+EQe0s0) GO TO 15
IF (P1(J)eGT40.,0) GO TO 14
B1{(Jy=B1{J)+GRAN
GO TO 18
14 B1(J)Y=81(J)-GRAN
15 CONTINUE
GO 70 11
16 DO 1B J=195

REGRESS ONE ITERATION AND REEVALUATE PARTIAL DERIVATIVES

K=K+
IF (P1{J)eEQe0s0) GO TO 18
IF (P1(J)eGT40,0) GO TO 17
B1(J)=81(J)~GRAN
GO TO 18
17 B1(JY=B1(J)+GRAN
18 CONTINUE
IF (KeGEo6) CALL STAGE2 (VAL +B1sATsREsZsGRANSN)
GO TO 2
SToP

19 FORMAT (5X+25HMODIFIED STEEPEST DESCENTs//)

20 FORMAI (1H1)

21 FORMAT (5Xs5HPel ezsFB8e594Xs3HB1I=915+s5H/102494X93HB2=9s15+5H/1024 94X
193HB3=915e5H/102434Xs3HB4=91595H/102494X9s3HBS=91595H/1024+77)
END
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SUBROUTINE STAGE2 (VAL sB1sAIsRE+ZsGRANsN)

BEGIN SECOND STAGE

DIMENSION P1(10)s SUMSQ1(20)s SUMSQ2{20)s X1{(20)s X2(20)s X3(20})»
1X4(20)s X5(20)s X6(20)s B(20)s R1(20)s B2(20)s AI(20)> RE(20)s KN¢
220)

COMPLEX CMPLASCEAP9GoG13G29G33012u)s212v)

PRINT 15

K=0

J=1

BEGIN VARIATION OF COEFFICIENTS ONE AT A TIME

CONTINUE

DO 2 I=1sN
Gl={(B1(1)*¥Z(1)#%24B1(2)1%Z(1)4B1(3))/(Z(T1)*%2+B1(4)*¥Z2(1)4+B1(5))
X1(1)y=REAL(G1)

X2({1)y=AIMAG(G1)

DO 3 I=1s5 '

B2(1)=B1(1)

SUMSQ1 (J) =040

SUMSQ2(JYy=040

B2{J)=B2 (J}+GRAN

DO 4 I=14N v

G2=(B2( 1 1#Z{T1)%¥¥24B2(2V%Z2(1)y+B2(3)}/{Z (1)1 *%24B2(4)%Z(1)+B2(5))
X3(1)=REAL(G2)

X4(1)=AIMAGIG2)
SUMSQ1(J)=SUMSQI(J)+U(RE(TI)=X3(T1)/RECT))*¥24+((AT(T1)1=X4(I))/AT(T))
13%2
4 SUMSQ2(J)=SUMSQ2{J)+((RE(T)=X1(T))/RE(T )1 ¥¥ 24+ (AT(T)=X2(T1))/AT (T}
%%

P1{Jy=5UMSQ1(J)=~SUMSQ2 (J}

IF (P1(J)eFQe0.0) GO TO ¢

IF (P1{J} GT40.,0) GO TO 5

B1(Jy=B1(J)+GRAN

GO TO &

B1{J1=81(J)-GRAN
y, CONTINUE

ITERATE UNTIL SUMSQ EXCEEDS SUMSQ OF PREVIOUS ITERATION

SUMSQ=0,60

DO 8 I=1sN
Gl=(Bl(1)¥Z(1)#%24B1(2)%2(1)4B1(3))/(Z(1)*¥%#24B1(4)%Z(1)4B1(5))
X1{1)y=REAL(G1)

X2(1)=AIMAG{G])
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14

9%

SUMSQ=SUMSQ+( (RE(T)=X1 (1)) /RECT) )% %2+ ((AT(T)=X2(T1))/AT(1))%*2
1F (SUMSQ,,GE,VAL) GO TO 12

DO 9 I=1s5

KN(T)=B1(I)/GRAN |
PRINT 16s SUMSQsKN(1)sKN(2)sKN(3)sKN(4)sKN(5)
VAL=SUMSQ

IF (P1(J).EQ.040) GO TO 11

IF (P1(J)¢GT.0.0) GO TO 10

B1(J)=B1(J)+GRAN

GO TO 11

B1(J)=B1(J)~GRAN

- CONTINUE

K=0

GO 70 7

CONTINUE

REGRESS ONE ITERATION AND BEGIN VARIATIONS OF NEXT COEFFICIENT
K=K+1

IF (KsEQe10) STOP

IF (P1(J)¢EQ4,0,0) GO TO 14
IF (P1(J}eGT40.0) GO TO 13
B1(J)=B1(J)=GRAN

GO TO 14

B1(J)=B1(J)+GRAN

CONTINUE

J=J+1

IF (JeGTWs8) J=1

GO 10 1§

RETURN



